(5x-2)(x+1)-3x(x^2-x-3)-2x(x-5)(x-4)

2 min read Jun 16, 2024
(5x-2)(x+1)-3x(x^2-x-3)-2x(x-5)(x-4)

Simplifying the Expression (5x-2)(x+1)-3x(x^2-x-3)-2x(x-5)(x-4)

This article aims to break down the process of simplifying the given algebraic expression: (5x-2)(x+1)-3x(x^2-x-3)-2x(x-5)(x-4).

Step 1: Expanding the Products

We begin by expanding each product in the expression:

  • (5x-2)(x+1): This is a simple binomial multiplication.
    • (5x-2)(x+1) = 5x² + 5x - 2x - 2
    • = 5x² + 3x - 2
  • 3x(x²-x-3): Here, we distribute the 3x to each term inside the parentheses.
    • 3x(x²-x-3) = 3x³ - 3x² - 9x
  • 2x(x-5)(x-4): We can use the distributive property twice. First, we multiply the first two terms, and then multiply the result by the remaining term.
    • 2x(x-5)(x-4) = 2x(x²-9x + 20)
    • = 2x³ - 18x² + 40x

Step 2: Combining Like Terms

Now, let's rewrite the entire expression with the expanded terms:

5x² + 3x - 2 - 3x³ + 3x² + 9x - 2x³ + 18x² - 40x

Next, we combine the terms with the same variable and exponent:

  • -3x³ - 2x³ = -5x³
  • 5x² + 3x² + 18x² = 26x²
  • 3x + 9x - 40x = -28x

Step 3: Final Result

Putting it all together, the simplified form of the expression is:

-5x³ + 26x² - 28x - 2

Therefore, the simplified expression is -5x³ + 26x² - 28x - 2.

Related Post